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Three-dimensional induction logging problems,
Part 2: A finite-difference solution

Gregory A. Newman∗ and David L. Alumbaugh‡

ABSTRACT

A 3-D finite-difference solution is implemented for
simulating induction log responses in the quasi-static
limit that include the wellbore and bedding that exhibits
transverse anisotropy. The finite-difference code uses a
staggered grid to approximate a vector equation for the
electric field. The resulting linear system of equations
is solved to a predetermined error level using iterative
Krylov subspace methods. To accelerate the solution at
low induction numbers (LINs), a new preconditioner
is developed. This new preconditioner splits the elec-
tric field into curl-free and divergence-free projections,
which allows for the construction of an approximate
inverse operator. Test examples show up to an order
of magnitude increase in speed compared to a simple
Jacobi preconditioner. Comparisons with analytical and
mode matching solutions demonstrate the accuracy of
the algorithm.

INTRODUCTION

Modeling induction log responses that include the wellbore,
invasion, and bedding anisotropy is a nontrivial calculation re-
quiring the 3-D solution of Maxwells’s equations. Such 3-D
simulations using the spectral Lanczos decomposition method
(SLDM) are reported by Druskin et al. (1999) and van der
Horst et al. (1999). A notable feature of the SLDM approach
is its ability to obtain multifrequency responses very efficiently.
Here, we investigate the finite-difference approach for solving
3-D induction logging problems. This method solves Maxwell’s
equations at a specific frequency by imposing a staggered grid
on a second-order partial differential equation for the elec-
tric field. The resulting system is solved in an iterative manner
to a given predetermined error level using Krylov subspace
methods (see Newman and Alumbaugh, 1995; Alumbaugh
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et al., 1996). In our adaptation of the finite-difference scheme,
we introduce a preconditioning technique that allows for a fur-
ther acceleration in the calculations at low induction numbers,
considerations for properly meshing the wellbore and inva-
sion zones, and modifications to account for simple anisotropy
in the vertical and horizontal bedding directions. This finite-
difference solution is not intended to and cannot directly
compete with the SLDM approach when multiple frequency
responses are desired. For a single frequency, however, the
method can be quite fast and is competitive with SLDM.

THE FINITE-DIFFERENCE METHOD

Isotropic formulation

Assuming a time-harmonic dependence of eiωt , where
i =√−1, a vector equation for the electric field for isotropic
media can be derived from Maxwell’s equations in the quasi-
static limit. Following Newman and Alumbaugh (1995), we
have

∇×∇×E+ iωµoσ E = −iωµoJ. (1)

In this equation, the electrical conductivity σ is assumed to be
isotropic; treatment for conductive media exhibiting transverse
anisotropy are given in Appendix A. Here the free-space mag-
netic permeability and angular frequencies are denoted by µo

andω. Specification of the source vector J depends on whether
a total or scattered electric-field solution is desired. In well-
logging applications, we prefer a scattered-field formulation
because measurements are often made very near the source. In
this situation, our experience has shown that a total-field solu-
tion requires very fine meshing. This leads to large demands on
computational resources, and it is virtually impossible to obtain
accurate in-phase responses after the direct-coupled field has
been removed. In a scattered-field formulation, we would set
E=Es in equation (1) and, following Newman and Alumbaugh
(1995), would set

J = (σ − σb)Eb, (2)
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where σb is the background conductivity of a uniform medium
and Eb is the background electric field. For highly accurate re-
sults in induction logging applications, we have found that spec-
ification of the background medium should be based on the for-
mation properties nearest the transmitter when it is isotropic.
For anisotropic media, however, proper selection of the back-
ground medium is still an open research question; this issue is
explored further in Avdeev et al. (2002).

When equation (1) is approximated with finite differences
using a Yee (1966) staggered grid, symmetrically scaled,
and Dirichlet boundary conditions applied (cf. Newman and
Alumbaugh, 1995; Alumbaugh et al., 1996), a linear system
results, where

KE = S. (3)

The matrix K is complex symmetric and sparse with a maximum
of 13 nonzero entries per row; S is a discrete and scaled repre-
sentation of J. This system can be solved efficiently at moderate
to high frequencies using the quasi-minimum residual method
with simple Jacobi preconditioning. Solution treatment as fre-
quencies approach the static limit are discussed below. The
quasi-minimum residual method belongs to the class of Krylov
subspace techniques that are highly efficient in iteratively solv-
ing sparse linear systems to a predetermined error level. [Refer
to Newman and Alumbaugh (1995) and Alumbaugh et al.
(1996) for details on how these solvers are implemented.] Once
the electric field is determined from equation (3), the magnetic
field is determined from Faraday’s law by numerically approx-
imating the curl of the electric field at the various nodal points
and interpolating either the electric or magnetic nodal values
to the point of interest. If the solution of equation (3) pro-
duces scattered fields, then background electric and magnetic
fields must be added to the interpolated fields to yield the total
fields.

PRECONDITIONING

It is well known that, when attempting to solve equation (3),
difficulties will be encountered as frequencies approach the
static limit (Alumbaugh et al., 1996; Smith, 1996). Similar diffi-
culties are reported by Druskin et al., (1999) when equation (1)
is solved with SLDM, which also uses finite-difference approx-
imations. In this section, we show how these difficulties can be
overcome with preconditioning. The preconditioner we intro-
duce parallels the work of Druskin et al. (1999), who developed
an SLDM method with Krylov subspaces generated from the
inverse of the Maxwell operator.

Following LaBrecque (1999) and Druskin et al. (1999), we
assume that the electric field can be decomposed into curl-free
and divergence-free projections using the Helmholtz theorem,
where

E = Ψ+∇ϕ (4)

and

∇ ·Ψ = 0. (5)

Substituting equations (4) and (5) into equation (1), we find
that

−∇2Ψ+ iωµoσ (Ψ+∇ϕ) = −iωµoJ, (6)

where we use the vector identity

∇×∇×Ψ = −∇2Ψ (7)

since∇×∇×∇ϕ= 0. The idea behind splitting the electric field
into curl-free and divergence-free projections is to deflate the
null space of the curl–curl operator. When Krylov methods are
applied directly to equation (1), this null space is responsible for
the poor convergence observed in the solution of equation (3)
as the frequency approaches the static limit. It is also respon-
sible for the spurious mode problem, where the gradient of a
scalar potential can be added to the electric field and still sat-
isfy the discrete version of equation (1) when the frequency is
sufficiently small.

We now seek to develop an approximate finite-difference
solution to equation (6) at low frequencies. To this end we
need to estimate the relative sizes of the curl–curl and atten-
uation operators in equation (1). Assuming a finite-difference
approximation, where 1 is the characteristic grid size in the
finite-difference mesh, the curl–curl operator is estimated to
be roughly 1/12; the attenuation operator is ωµoσmax. Here,
σmax is the maximum conductivity in the mesh. Thus, as fre-
quency falls and the grid size is reduced, we observe the
condition

1/12 À ωµoσmax (8)

or

1À 12ωµoσmax. (9)

When the finite-difference grid is nonuniform,1 should be re-
placed by 1max, the maximum grid size used to approximate
equation (1). Note that the right-hand side of equation (9) is a
dimensionless number and its square root is an induction num-
ber, which is an invariant parameter for diffusive electromag-
netic fields. When frequency falls, we increase the scale length
and/or conductivity accordingly to have the fields remain in-
variant. Thus, the induction number appears to be more impor-
tant in determining when equation (9) holds than frequency
alone. Also, even at moderate frequencies, equation (9) may
still hold if the grid size needed for the problem is sufficiently
small. This has direct implications for induction logging prob-
lems which use small grid sizes. Now, if equation (9) is satisfied,
we can decouple equation (6) such that

−∇2Ψ ≈ −iωµoJ. (10)

The boundary conditions required to solve equation (10) are
a mixture of Dirichlet and Neumann types. Dirichlet condi-
tions are applied to the tangential components of Ψ on the
mesh boundaries, Ψt = 0, and Neumann conditions on the nor-
mal components, ∂Ψn/∂n= 0. These conditions enforce the re-
quirement that ∇ ·Ψ= 0 on the mesh boundaries and in turn
within the solution domain, since the divergence-free field is
required to satisfy the constraint equation

∇2(∇ ·Ψ) = 0. (11)

Equation (11) follows by applying the divergence operator to
equation (7). It is well known that when a function u satisfies
Laplace’s equation, ∇2u= 0, on some domain Ä with homo-
geneous boundary conditions of u= 0 or ∂u/∂n= 0 prescribed
along the boundary0, it is identically zero on that domain. Note
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that when applying the Neumann boundary condition, n would
specify the direction of the outward normal at the boundary.

The vector field Ψ is not a complete solution to Maxwell’s
equations since it does not satisfy the auxiliary divergence con-
dition on the current density within the earth. To derive this
condition, we take the divergence of equation (1) and substi-
tute equation (4) to arrive at

∇ · σ (∇ϕ) = −∇ · σ (Ψ)−∇ · J. (12)

Dirichlet boundary conditions will be applied to the discrete
version of equation (12), where ϕ= 0 on the mesh boundaries.
When the air–earth interface is present, however, we use the
Neumann condition, ∂ϕ/∂n= 0, where n specifies the direction
of the outward normal at that interface. This later boundary
condition enforces the constraint that current cannot leak from
the earth into the air.

Thus, approximate solutions of equation (6) at very small in-
duction numbers can be obtained by first solving equation (10),
followed by equation (12). A solution to these equations can
be obtained efficiently using staggered finite-difference meth-
ods with conjugate-gradient methods to iteratively solve the
systems to predetermined error levels.

Now if it turns out that we cannot obtain a good approx-
imate solution to equation (3) with a reasonable number of
Krylov subspace iterations or if such an approximate solution
cannot be easily computed, we consider modifying the origi-
nal problem to obtain a faster solution. This is the idea behind
preconditioning, where we specify a preconditioning matrix M
and effectively solve the modified problem

M−1KE =M−1S. (13)

At each step of the preconditioned algorithm, it is necessary
to compute the product of M−1 with a vector, or equivalently
to solve a linear system with the coefficient matrix M; so M
should be chosen such that this linear system is much easier to
solve than the original problem. Moreover, the properties we
desire in a preconditioner for non-Hermitian matrix iterations,
including quasi-minimum residual and other related methods,
are that the preconditioned matrix should somehow approx-
imate the identity matrix (Greenbaum, 1997). It is therefore
obvious that the approximate scheme discussed above could
be very effective in preconditioning equation (3) at moderate
to low induction numbers (LINs). If this idea is to be practical,
however, we must find fast methods to solve the approximate
equations. A good preconditioner is not simply based on a rela-
tively low-dimension Krylov subspace but on the time required
to construct it. In the implementation of the LIN precondi-
tioner, we first convert equations (10) and (12) into discrete
matrix equations via staggered finite differences. In the precon-
ditioned quasi-minimum residual algorithm, at each iteration,
we then substitute the residual, defined by r=KE− S, into the
right-hand side of the discrete version of equation (10). Equa-
tion (10) is then solved, followed by equation (12). Fast precon-
ditioned conjugate gradient techniques employing incomplete
Cholesky factorization have proven to be quite effective when
solving these equations. Furthermore, we have determined that
it is not necessary to precisely solve these equations. Test ex-
amples show that we only need to approximately solve these
equations for a significant impact on reducing the time required
for solving equation (3).

Equation (9) provides only a rough measure on the effec-
tiveness of the preconditioner. For a better measure we need
to estimate the largest and smallest nonzero values that the
discrete curl–curl operator can assume. This naturally leads to
estimating its eigenvalues, which is useful in determining when
the preconditioner will be the most and the least effective. Con-
sider equation (3) when ω= 0. Using the maximum row sum,
we find the largest eigenvalue of the discrete curl–curl operator
satisfies

λmax ≈ 13
12

min

, (14)

where 1min is the minimum grid size used in the mesh. The
corresponding minimum nonzero eigenvalue is estimated in
Appendix B, where

λmin ≈ 2π2

L2
max

, (15)

with Lmax as the largest dimension of the 3-D Cartesian mesh.
Given the largest eigenvalue estimate, the inequality in equa-
tion (9) is written as

1À ωµoσmax1
2
min

13
, (16)

which provides an optimistic measure when the preconditioner
will be most effective. In the worst case, however, which corre-
sponds to the smallest nonzero eigenvalue, we have

1À ωµoσmaxL2
max

2π2
. (17)

Unfortunately, equation (17) shows that reducing the grid size
1 does not solve equation (3) faster. It is well known that
Krylov methods tend to first resolve solution components re-
lated to eigenvectors with the largest eigenvalues of the ma-
trix K. As frequency falls or at small induction numbers, these
eigenvalues correspond closely to those of the curl–curl opera-
tor. If only the larger eigenvalues are needed to produce an ac-
curate solution to the problem, then the inequality in equation
(16) would provide a good measure of the effectiveness of the
preconditioner. On the other hand, if eigenvectors correspond-
ing to the smaller eigenvalues are necessary to capture the so-
lution, then equation (17) would provide a better measure.

Mesh considerations

To simulate induction log responses with the finite-difference
scheme, we need to approximate the cylindrical borehole, in-
cluding any invasion zones, using a Cartesian grid. In induc-
tion logging simulations, this approximation yields satisfactory
results if the borehole/invasion-zone diameter is small com-
pared to the wavelengths excited in the media. This is almost
always the case, given the frequencies typically used in log-
ging applications are <50 MHz and the electrical conductivity
of drilling mud and rocks are <20 S/m (Hohmann and Ward,
1988). Figure 1 shows how the Cartesian grid is imposed upon
the problem where the borehole deviates 45◦ from the verti-
cal. In horizontal cross-section the borehole appears elliptical
in shape, and the conductivity of the cells that intersect the
borehole boundary are assigned by averaging the conductivity
of the drilling mud and formation according to that proportion
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of the cell volume intersecting the different media. In vertical
cross-section, the grid results in a staircasing of the borehole.
Nevertheless, we have determined through numerical experi-
ments, as demonstrated below, that the Cartesian grid works
quite well and can produce simulation results accurate to within
a few percent, provided the cell size over the borehole volume
does not exceed a few centimeters. Finally, it is only necessary
to impose the grid on half of the problem because of symmetry;
note that the tangential electric fields vanish along the symme-
try plane (y= 0) when coaxial magnetic sources are deployed.
It is also possible to use symmetry when the source is off axis of
the borehole. The requirements are that the source be located

FIG. 1. Finite-difference discretization of a cylindrical bore-
hole deviating 45◦ using a Cartesian grid (top). The mesh in
the vertical cross-section (bottom). The mesh in the horizontal
cross-section is for half of the borehole and surrounding forma-
tion. A semiellipse in the lower panel indicates the true shape
of the borehole in the horizontal cross-section. The grayscale
to the right provides the range of conductivities used in the
mesh.

Table 1. LIN preconditioner effectiveness over three decades of frequency. The model from which the table is constructed is
shown in Figure 2. The squared residual norm, ‖KE – S‖2/‖S‖2, terminates the solution iteration process and is based on a threshold
value of 1.0e-08. When a simulation could not achieve this threshold, the solution iteration was terminated at 30 quasi-minimum
residual iterations. Values based on the right sides of equations (16) and (17) are also included in the table and help estimate when
the preconditioner will be effective before the quasi-minimum residual solution is attempted.

Frequency Solution time (s) Iterations Squared residual norm Equation (16) Equation (17)

10 kHz 148 3 2e-09 3.0e-04 20.5
40 kHz 185 4 5e-11 1.2e-03 82
80 kHz 184 4 1.5e-10 2.4e-03 164
160 kHz 187 4 1.8e-10 4.8e-03 328
320 kHz 191 4 8.9e-10 9.6e-03 656
640 kHz 229 5 4.2e-09 1.9e-02 1312
1 MHz 316 7 7.7e-09 3.0e-02 2050
5 MHz 1251 30 1.4e-07 1.5e-01 10 250

on the symmetry plane with a magnetic moment parallel to the
plane of symmetry.

DEMONSTRATION OF THE FINITE-DIFFERENCE
SOLUTION

Effectiveness of the LIN preconditioner

We now demonstrate through a self-consistency check the
ability of the finite-difference solution to simulate deviated
borehole responses and demonstrate the effectiveness of the
LIN preconditioner. Consider a 45◦ deviated borehole as
shown in Figure 2a, where the mud resistivity is 0.05 ohm-m
and the formation is 50 ohm-m. The radius of the wellbore is
10 cm, where the transmitter–receiver offsets range from 0.2
to 4 m (offsets beyond 2 m are not shown in Figure 2a). The
transmitter is a magnetic dipole, coaxial with the borehole, and
the receivers sample the coaxial magnetic field at 160 kHz.
The mesh consists of 134 832 grid points that sample 337 376
electric-field unknowns on a domain that is 16× 6× 16 m in
the x, y, and z coordinate directions. Figure 2b illustrates the
convergence rate of the finite-difference solution when sim-
ple Jacobi preconditioning is used, where the solution time is
1672 s for an IBM RS-6000 590 workstation. When the prob-
lem is solved using the LIN preconditioner, the solution time
is 187 s—nearly an order of magnitude faster. To verify the
finite-difference responses for this model, we compare the re-
sponses in Figure 2c to the mode matching solution of Chew
et al. (1984). Excellent agreement is observed over the com-
plete range of offsets. In these comparisons, we have not
removed the direct-coupled field in the real (in-phase) re-
sponses; hence, the real values of the field are greater than
the quadrature values. Finite-difference responses, where the
direct-coupled field has been removed, are presented below
and in the companion modeling paper (Avdeev et al., 2002),
where excellent results are also reported.

Table 1 shows the effectiveness of the LIN preconditioner
over three decades of frequency. As expected, the precondi-
tioner is most effective at lower frequencies. For the highest
frequency, 5 MHz, the preconditioner can actually fail to con-
verge and may also result in much slower solution times than a
solution that uses simple Jacobi preconditioning. In this exam-
ple, the upper bound given by equation (16) provides a good
measure of when to use the LIN precondioner, provided the
right-hand side of equation (16) is at least two orders of mag-
nitude smaller than its left-hand side. The lower bound expres-
sion [equation (17)], on the other hand, is too pessimistic.
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Additional examples demonstrating the LIN preconditioner
on more complex induction models can be found in Avdeev
et al. (2001, Table 2). The examples show the LIN precondi-
tioner can be very effective for frequencies as high as 160 kHz
and can produce a solution up to about five times faster than a
solution using Jacobi preconditioning.

CONCLUSIONS

A finite-difference solution has been developed for simulat-
ing 3-D induction logging responses. Important features of the

FIG. 2. Comparison and self-constancy check of the finite-difference solution for a 45◦ deviated borehole within a uniform back-
ground medium of 50 ohm-m. (a) The borehole diameter is 20 cm, and mud resistivity is 0.05 ohm-m. The transmitter-receivers span
offsets ranging from 0.2 to 4 m. (b) The convergence rate of the finite-difference solution for Jacobi and LIN preconditioning at
160 kHz along with the required computation times. (c) Finite-difference responses (solid-lines) compared to the mode-matching
solution (small circles) of Chew et al. (1984).

solution include a novel preconditioner that can significantly
reduce computation times at low induction numbers and fre-
quencies and the incorporation of transverse anisotropy into
the solution. Furthermore, measures have been derived to in-
dicate when the preconditioner will be effective. The solution
is quite general and is capable of simulating borehole effects
as well. In the companion paper of Avdeev et al. (2002), we
compare this solution to an iterative integral equation solution
for 3-D induction logging problems in deviated boreholes with
anisotropic bedding.
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APPENDIX A
SOLUTION TREATMENT FOR TRANSVERSE ANISOTROPIC MEDIA

The electromagnetic staggered finite-difference method for
transverse anisotropic conductive media is a simple extension
of the scattered-field version of equation (1), where

∇×∇×Es(r)+ iωµoσ(r)Es(r)

= −iωµo(σ(r)− σb(r))Eb(r). (A-1)

Here Es(r) is the scattered electric field,σb(r) is the background
electrical conductivity, and Eb(r) is the electric field of the back-
ground medium. In our case σb(r) is assumed to be an isotropic
whole space (i.e., σb(r)= σws); thus, Eb(r) can be calculated
analytically.

The fundamental difference between this expression and
that given in equation (1) and in Newman and Alumbaugh
(1995) is that σ(r) is now a 3× 3 tensor that represents the
anisotropic conductivity. In the most general case this tensor
is full. However, in the case of transverse anisotropy only the
main diagonal is nonzero, i.e.,

σ(r) =

σxx(r) 0 0

0 σyy(r) 0

0 0 σzz(r)

 , (A-2)

where σxx(r) is the electrical conductivity in the x̂ direction,
σyy(r) is the electrical conductivity in the ŷ direction, and σzz(r)
is the electrical conductivity in the ẑ direction.

Combining equation (A-2) with (A-1) and expanding the
curl operations yields the following three coupled expressions
for the scattered electric fields:

∂

∂y

(
∂Es

y(r)

∂x
− ∂Es

x(r)
∂y

)
− ∂

∂z

(
∂Es

x(r)
∂z

− ∂Es
z(r)
∂x

)
+ iωµ0σxx(r)Es

x(r) = −iωµ0
(
σxx(r)− σws

)
Eb

x(r),

(A-3)

∂

∂z

(
∂Es

z(r)
∂y

− ∂Es
y(r)

∂z

)
− ∂

∂x

(
∂Es

y(r)

∂x
− ∂Es

x(r)
∂y

)
+ iωµ0σyy(r)Es

y(r) = −iωµ0
(
σyy(r)− σws

)
Eb

y(r),

(A-4)

and

∂

∂x

(
∂Es

x(r)
∂z

− ∂Es
z(r)
∂x

)
− ∂

∂y

(
∂Es

z(r)
∂y

− ∂Es
y(r)

∂z

)
+ iωµ0σzz(r)Es

z(r) = −iωµ0
(
σzz(r)− σws

)
Eb

z(r).

(A-5)

Each equation contains a different component of the con-
ductivity tensor, and the equations are not cross-coupled
in terms of the directional conductivities. When expressions
(A-3)–(A-5) are expanded numerically using the staggered
finite-difference operator of Yee (1966), the terms containing
the variable electrical conductivity are confined to the main
diagonal of the sparse stiffness matrix and to the source vec-
tor. Thus, the equations defining the problem are identical in
structure to those given in Newman and Alumbaugh (1995, Ap-
pendix A), which results in a stiffness matrix that is complex
symmetric. This system of equations can therefore be solved
using the same methods as the isotropic solution. [See Newman
and Alumbaugh (1995) for details on how this is done.]

As an additional note, in transverse anisotropic media we of-
ten assume that the electrical conductivity is constant parallel
to the bedding. Thus, if the bedding is assumed to be horizontal,
the conductivity tensor can be further simplified to read

σ(r) =

σh(r) 0 0

0 σh(r) 0

0 0 σv(r)

 . (A-6)
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Here, σh(r) represents the electrical conductivity in the
horizontal direction, i.e., parallel to the bedding, and σv(r) is
the conductivity perpendicular to the beds.

To verify the finite-differences solution to simulate responses
arising from anisotropic media, we consider a whole-space mo-
del with vertical and transverse resistivities of 1 and 4 ohm-m
(Figure A-1a). The point magnetic dipole transmitter and recei-

FIG. A-1. Comparison of the finite-difference results (crosses
and vertical dash symbols) with those produced from a 1-D
fast Hankel transform solution (solid lines) for a transversely
anisotropic whole-space model at (a) 160 kHz. (b) Real
(in-phase) and quadrature comparisons. The direct-coupled
field has been removed from the real responses.

vers are deviated 45◦ from the vertical. Because of the deviation
in the transmitter, electric currents are induced to flow in both
the transverse and vertical directions, exciting a magnetic-field
response sensitive to the vertical and transverse resistivities of
the medium. Figure A-1b compares the finite-difference results
(in-phase and quadrature responses) to those produced using
a 1-D fast Hankel transform. The comparison is excellent.
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APPENDIX B
SMALLEST NONZERO EIGENVALUE ANALYSIS

To estimate the smallest nonzero eigenvalue of the matrix
K in equation (3) when ω= 0, we first consider the curl–curl
operator in the continuous case. Thus,

∇×∇×v = λv, (B-1)

where v and λ are the corresponding eigenvector and eigen-
value pairs. If we apply the divergence operator to equa-
tion (B-1), we immediately see that

0 = λ∇ · v. (B-2)

Since we are interested in the case where λ 6= 0, we conclude
that

∇ · v = 0. (B-3)

Thus, the eigenvalue problem can be simplified to

−∇2v = λv, (B-4)

where we seek solutions to this problem under the constraint
that v is divergence free. When we consider the discrete case,
we need to impose boundary conditions on v, where its tan-
gential components vanish on the boundaries of the modeling
grid. Specifically,

n · v = 0, (B-5)

where n is the unit outward normal. We also require that the
normal derivatives of v vanish on the boundaries. These bound-
ary conditions are required to ensure that v is divergence free.
Candidate eigenfunctions that satisfy these boundary condi-
tion requirements are

vx = Acos(αx) sin(βy) sin(δz),
(B-6)

vy = B sin(αx) cos(βy) sin(δz),

and

vz = C sin(αx) sin(βy) cos(δz),

whereα=π/Lx ,β =π/L y, and δ=π/Lz, and where Lx , L y, and
Lz are the dimensions of the modeling domain in the x, y, and
z directions. The coefficients A, B, and C are not arbitrary in
equation (B-6) because ∇ · v= 0. Thus, once two components
of v are specified, the final component must be selected such
that v is divergence free. For example, if A=βδ and B=αδ,
then C=−2αβ.

If we consider the discrete version of equation (B-4) on a
mesh with uniform grid size 1, we can show with equation
(B-6) that

λ = 4
12

(
sin2

(
lπ1

2Lx

)
+ sin2

(
mπ1

2L y

)
+ sin2

(
nπ1

2Lz

))
.

(B-7)

The range on the indices l , m, and n range as follows: l =
0, 1, . . . , Nx;m= 0, 1, . . . , Ny; and n= 0, 1, . . . , Nz, where Lx =
1Nx , L y=1Ny and Lz=1Nz. To estimate the smallest
nonzero value of λ, we set Lx , L y, and Lz to the largest di-
mension of the modeling domain, Lmax. If we select l , m, or n
to be zero and the others to be one (we arbitrarily set l = 0,
m= 1, and n= 1) and employ a small argument expression for
the sine function (sin(x)≈ x when x→ 0), we find an estimate
of the smallest nonzero eigenvalue to be

λmin ≈ 2π2

L2
max

. (B-8)

Note that we cannot set two of the indices to be zero in equa-
tion (B-7) because this would result in a zero eigenvector, which
is a trivial solution to the eigenvalue problem.


